skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Harte, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Both theory and prior studies predict that climate warming should increase attack rates by herbivores and pathogens on plants. However, past work has often assumed that variation in abiotic conditions other than temperature (e.g. precipitation) do not alter warming responses of plant damage by natural enemies. Studies over short time periods span low variation in weather, and studies over long time‐scales often neglect to account for fine‐scale weather conditions.Here, we used a 20+ year warming experiment to investigate if warming affects on herbivory and pathogen disease are dependent on variation in ambient weather observed over 3 years. We studied three common grass species in a subalpine meadow in the Colorado Rocky Mountains, USA. We visually estimated herbivory and disease every 2 weeks during the growing season and evaluated weather conditions during the previous 2‐ or 4‐week time interval (2‐week average air temperature, 2‐ and 4‐week cumulative precipitation) as predictors of the probability and amount of damage.Herbivore attack was 13% more likely and damage amount was 29% greater in warmed plots than controls across the focal species but warming treatment had little affect on plant disease. Herbivory presence and damage increased the most with experimental warming when preceded by wetter, rather than drier, fine‐scale weather, but preceding ambient temperature did not strongly interact with elevated warming to influence herbivory.Disease presence and amount increased, on average, with warmer weather and more precipitation regardless of warming.Synthesis. The effect of warming over reference climate on herbivore damage is dependent on and amplified by fine‐scale weather variation, suggesting more boom‐and‐bust damage dynamics with increasing climate variability. However, the mean effect of regional climate change is likely reduced monsoon rainfall, for which we predict a reduction in insect herbivore damage. Plant disease was generally unresponsive to warming, which may be a consequence of our coarse disease estimates that did not track specific pathogen species or guilds. The results point towards temperature as an important but not sufficient determinant and regulator of species interactions, where precipitation and other constraints may determine the affect of warming. 
    more » « less
  2. Abstract To advance understanding of biodiversity and ecosystem function, ecologists seek widely applicable relationships among species diversity and other ecosystem characteristics such as species productivity, biomass, and abundance. These metrics vary widely across ecosystems and no relationship among any combination of them that is valid across habitats, taxa, and spatial scales, has heretofore been found. Here we derive such a relationship, an equation of state, among species richness, energy flow, biomass, and abundance by combining results from the Maximum Entropy Theory of Ecology and the Metabolic Theory of Ecology. It accurately captures the relationship among these state variables in 42 data sets, including vegetation and arthropod communities, that span a wide variety of spatial scales and habitats. The success of our ecological equation of state opens opportunities for estimating difficult-to-measure state variables from measurements of others, adds support for two current theories in ecology, and is a step toward unification in ecology. 
    more » « less
  3. null (Ed.)
    Spatial patterns in ecology contain useful information about underlying mechanisms and processes. Although there are many summary statistics used to quantify these spatial patterns, there are far fewer models that directly link explicit ecological mechanisms to observed patterns easily derived from available data. We present a model of intraspecific spatial aggregation that quantitatively relates static spatial patterning to negative density dependence. Individuals are placed according to the colonization rule consistent with the Maximum Entropy Theory of Ecology (METE), and die with probability proportional to their abundance raised to a power α, a parameter indicating the degree of density dependence. This model can therefore be interpreted as a hybridization of MaxEnt and mechanism. Our model shows quantitatively and generally that increasing density dependence randomizes spatial patterning. α = 1 recovers the strongly aggregated METE distribution that is consistent with many ecosystems empirically, and as α → 2 our prediction approaches the binomial distribution consistent with random placement. For 1 < α < 2, our model predicts more aggregation than random placement but less than METE. We additionally relate our mechanistic parameter α to the statistical aggregation parameter k in the negative binomial distribution, giving it an ecological interpretation in the context of density dependence. We use our model to analyze two contrasting datasets, a 50 ha tropical forest and a 64 m 2 serpentine grassland plot. For each dataset, we infer α for individual species as well as a community α parameter. We find that α is generally larger in the tightly packed forest than the sparse grassland, and the degree of density dependence increases at smaller scales. These results are consistent with current understanding in both ecosystems, and we infer this underlying density dependence using only empirical spatial patterns. Our model can easily be applied to other datasets where spatially explicit data are available. 
    more » « less
  4. Abstract The Maximum Entropy Theory of Ecology (METE) predicts the shapes of macroecological metrics in relatively static ecosystems, across spatial scales, taxonomic categories and habitats, using constraints imposed by static state variables. In disturbed ecosystems, however, with time‐varying state variables, its predictions often fail. We extend macroecological theory from static to dynamic by combining the MaxEnt inference procedure with explicit mechanisms governing disturbance. In the static limit, the resulting theory, DynaMETE, reduces to METE but also predicts a new scaling relationship among static state variables. Under disturbances, expressed as shifts in demographic, ontogenic growth or migration rates, DynaMETE predicts the time trajectories of the state variables as well as the time‐varying shapes of macroecological metrics such as the species abundance distribution and the distribution of metabolic rates over individuals. An iterative procedure for solving the dynamic theory is presented. Characteristic signatures of the deviation from static predictions of macroecological patterns are shown to result from different kinds of disturbance. By combining MaxEnt inference with explicit dynamical mechanisms of disturbance, DynaMETE is a candidate theory of macroecology for ecosystems responding to anthropogenic or natural disturbances. 
    more » « less
  5. Snow is an important driver of ecosystem processes in cold biomes. Snow accumulation determines ground temperature, light conditions, and moisture availability during winter. It also affects the growing season’s start and end, and plant access to moisture and nutrients. Here, we review the current knowledge of the snow cover’s role for vegetation, plant-animal interactions, permafrost conditions, microbial processes, and biogeochemical cycling. We also compare studies of natural snow gradients with snow experimental manipulation studies to assess time scale difference of these approaches. The number of tundra snow studies has increased considerably in recent years, yet we still lack a comprehensive overview of how altered snow conditions will affect these ecosystems. Specifically, we found a mismatch in the timing of snowmelt when comparing studies of natural snow gradients with snow manipulations. We found that snowmelt timing achieved by snow addition and snow removal manipulations (average 7.9 days advance and 5.5 days delay, respectively) were substantially lower than the temporal variation over natural spatial gradients within a given year (mean range 56 days) or among years (mean range 32 days). Differences between snow study approaches need to be accounted for when projecting snow dynamics and their impact on ecosystems in future climates. 
    more » « less
  6. Abstract Accumulating evidence suggests that ecological communities undergoing change in response to either anthropogenic or natural disturbances exhibit macroecological patterns that differ from those observed in similar types of communities in relatively undisturbed sites. In contrast to such cross‐site comparisons, however, there are few empirical studies of shifts over time in the shapes of macroecological patterns. Here, we provide a dramatic example of a plant community in which the species–area relationship and the species‐abundance distribution change markedly over a period of six years. These patterns increasingly deviate from the predictions of the maximum entropy theory of ecology (METE), which successfully predicts macroecological patterns in relatively static systems. The error in the species–area relationship prediction additionally correlates over time with increased stress measured as mortality minus recruitment, providing a link between demography and the failure of macroecological theory. Information on the dynamic state of an ecosystem inferred from snapshot measurements of macroecological community structure can potentially assist in identifying causes and consequences of disturbance and extending the domain of current theories and models to disturbed ecosystems. 
    more » « less